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SUMMARY

We present a new Galerkin–Legendre spectral projection solver for the simulation of natural convection
in a di�erentially heated cavity. The projection method is applied to the study of the �rst non-stationary
instabilities of the �ow in a 8:1 cavity. Statistics of the periodic solution are reported for a Rayleigh
number of 3:4× 105. Moreover, we investigate the location and properties of the �rst Hopf bifurcation
and of the three successive bifurcations. The results con�rm the previous �nding in the range of Rayleigh
numbers investigated that the �ow instabilities originate in the boundary layer on the vertical walls.
A peculiar phenomenon of symmetry breaking and symmetry restoring is observed portraying the �rst
steps of the transition to chaos for this �ow. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the behaviour of �ows can change dramatically as the governing
parameters go through critical values at which bifurcation points are located. Recent interest
in �ow simulation for supercritical values of the parameters has increased the need of accurate
and e�cient solution methods, in order to perform the long-time simulations necessary for
investigating the asymptotic behaviour of such systems. A very extensively studied example
is the problem of 2D natural convection, in particular, the Rayleigh–B�enard problem and the
di�erentially heated cavity.
In this paper we outline a new spectral solver suitable for the simulation of the time-

dependent thermal convection problem. The �uid is modelled by the Boussinesq approxima-
tion, and a primitive variable formulation is employed for the Navier–Stokes equations. To
achieve the desired high accuracy, the spatial discretization is based on a Galerkin–Legendre
spectral method. To implement variable separation in the two spatial directions, each variable
is expanded in suitable basis functions, to obtain matrices with optimally narrow bandwidth.
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A second-order incremental projection method [1] is adopted to discretize in time the equa-
tion system governing velocity, pressure and temperature �elds according to a three-level BDF
scheme [2].
The accuracy of the proposed method is assessed by a test against a known analytical

solution and by comparison with benchmark results for the problem of natural convection in
a square di�erentially heated cavity. We also provide e�ciency tests on scalar and vectorial
architectures.
The spectral method is then applied to the investigation of the thermal convection �ow in

a di�erentially heated rectangular cavity. For this problem extensive studies of the instability
mechanisms and of the chaotic behaviour have been made by several authors, see e.g. Refer-
ences [3, 4]. We consider a cavity with height to width aspect ratio of 8, �lled by a �uid with
Pr=0:71, at high, supercritical, Rayleigh numbers, Ra¿3× 105. The details concerning the
problem de�nition are not reported here for the sake of conciseness, a thorough description of
the problem, including the governing equations, non-dimensional scaling and boundary condi-
tions can be found in Reference [5]. We investigate the dependency of the solution properties
on the spatial resolution adopted for Ra=3:4× 105. Afterwards, we concentrate on the in-
vestigation of the �rst instabilities that occur in the �ow. In particular, we �nd that the �rst
instability is a Hopf bifurcation closely followed by several (we counted three) transcritical
instabilities which alternatively break and restore the skew-symmetry of the �ow.
The paper is organized as follows. In Section 2 we brie�y outline the numerical procedure

and report numerical tests which assess the accuracy, in time and space, and e�ciency of the
method. In Section 3, we present the numerical results for the 8:1 di�erentially heated cavity
problem.

2. NUMERICAL METHOD

2.1. Galerkin–Legendre spectral approximation

A distinctive feature of the proposed method is that appropriate bases are adopted for the
approximation of the di�erent unknowns. In particular, for the velocity we adopt a basis
proposed by Shen [6] (here referred to as L∗

n) in both spatial directions, and, for the pressure,
the orthogonal Legendre polynomials Ln, suitably scaled to obtain a mass matrix equal to
the identity (L�

n). For the temperature approximation, we adopt two di�erent bases to match
the di�erent boundary conditions in the two directions. The L∗

n basis is employed in the x-
direction, where Dirichlet boundary conditions are imposed, while a di�erent basis (L?

n ) is
employed in the y-direction to impose Neumann boundary conditions in an essential way.
Hence, we have the following double expansions for the discrete variables:

un;m(t; x; y)=
N∑

n=0

M∑
m=0
Un;m(t)L∗

n(x)L
∗
m(y) (1)

pn;m(t; x; y)=
N−2∑
n=0

M−2∑
m=0

Pn;m(t)L�
n(x)L

�
m(y) (2)

�n;m(t; x; y)=
N∑

n=0

M∑
m=0
�n;m(t)L∗

n(x)L
?
m (y) (3)
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These choices allow us to fully exploit variable separation in the resulting algorithm and
minimize the bandwidth of the discrete operators.

2.2. Second-order incremental projection method

The system of the Navier–Stokes equations for a Boussinesq �uid is discretized in time by
a second-order BDF scheme. The equations of the system are uncoupled by the incremental
projection method of Guermond and Quartapelle [1] whose spectral implementation according
to the BDF scheme analysed in Reference [2] is described in Reference [7] in the context of
a Galerkin–Legendre spectral approximation.
A particular feature of this projection method is that the end-of-step, divergence free, veloc-

ity is completely eliminated from the algorithm thanks to the fact that the intermediate velocity
converges to the exact solution with the same order of accuracy [1], see also Reference [7].
The non-linear and temperature terms in the momentum equation and the advection term

in the temperature equation are taken into account explicitly by introducing the extrapolations
uk+1
? ≡2uk − uk−1 and �k+1

? ≡2�k − �k−1 for the velocity and temperature, respectively. As a
result, we obtain the following cascade of discrete elliptic problems: �rst, solve the di�usion
step provided by the BDF time discretization




3uk+1 − 4uk + uk−1

2�t
−
√

Pr
Ra

∇2uk+1= − (uk+1
? · ∇)uk+1

?

− 1
3∇(7pk − 5pk−1 + pk−2) +—̂�k+1

?

uk+1|@�=0

(4)

then, perform the projection step formulated as Poisson problem for the pressure increment
(pk+1 − pk)

−∇̂2(pk+1 − pk)= − 3
2�t

∇ · uk+1;
@(pk+1 − pk)

@n |@�
=0 (5)

�nally, solve for the temperature

3�k+1 − 4�k + �k−1

2�t
− 1√

RaPr
∇2�k+1= − uk+1 · ∇�k+1

?

�k+1|x=±W=2= ∓ 1
2 ; (@�k+1=@n)|y=±H=2=0

(6)

2.3. Algebraic problem

The time and space discretizations lead to the �nal algebraic problem, which can be written
in the following compact matrix form:

U k+1N ∗ +M ∗U k+1 + �M ∗U k+1N ∗ = F k+1 (7)

D�(Pk+1 − Pk) + (Pk+1 − Pk)E� =Gk+1 (8)

�k+1N? +M ∗�k+1 + �M ∗�k+1N? =Hk+1 (9)
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where �=3=(2�t)
√

Pr=Ra and �=3=(2�t
√
RaPr): M and N are the mass matrices in the

x- and y-direction, respectively, while D� and E� are the sti�ness matrices. The non-linear
term of the momentum equation and its counterpart in the temperature equation are evaluated
by means of the pseudospectral technique based on the Gauss–Legendre quadrature with 3

2N
points, to ensure exact integration of the quadratic non-linearities. The solutions of the alge-
braic systems (7) for the two velocity components and (9) for the temperature are obtained by
means of direct fast Helmholtz solvers based on the eigendecomposition of the mass matrices
in the two spatial directions. The solution of the pressure system (9) is obtained by an anal-
ogous fast spectral Poisson solver which is based on the eigendecomposition of the sti�ness
matrices.

2.4. Accuracy and performance evaluation

The accuracy of the proposed method has been evaluated both by investigating the rate of
convergence, in space and time, and by comparison with benchmark results available in the
literature.
For the analytical test case, the following unsteady exact solution of the Boussinesq

equations in a [−1; 1]2 square domain has been employed:

u=− cos(�x) sin(�y) sin(2t)
v= sin(�x) cos(�y) sin(2t)

p=− 1
4 [cos(2�x) + cos(2�y)][sin(2t)]

2

�= cos(�x) cos(�y) sin(2t)

(10)

corresponding to the forcing terms

fu =− cos(�x) sin(�y)[2 cos(2t) + 2�2(Ra=Pr)−1=2 sin(2t)]

fv = sin(�x) cos(�y)[2 cos(2t) + 2�2(Ra=Pr)−1=2 sin(2t)]− cos(�x) cos(�y) sin(2t)

f� = cos(�x) cos(�y)[2 cos(2t) + 2�2(RaPr)−1=2 sin(2t)]

(11)

with an obvious meaning of the symbols. To test space convergence, the same solution but
without time dependence has been employed.
As shown in Figure 1, where the l∞(L2(�); 0; T ) norm of the error is plotted, the method

is second order accurate in time and converges with spectral accuracy in space.
To further test the accuracy of the proposed method, we compared present results for the

problem of the di�erentially heated square cavity with the benchmark proposed by Le Qu�er�e
[8]. The comparison reported in Table I clearly shows the high accuracy of the method.
The performance of the method has been evaluated for the 8:1 di�erentially heated cavity

problem. The CPU time per degree of freedom and time step has been determined for two
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Figure 1. Convergence plot for the analytical test case. (Left) Error in l∞(L2(�); 0; T )
norm versus �t. (Right) Error in L2(�) norm versus polynomial degree, a linear behaviour

indicates a spectral convergence on this semi-logarithmic scale.

Table I. Di�erentially heated square cavity at Ra=1:4085× 106: comparison between the present results
and benchmark results in Reference [8], where a di�erent non-dimensionalization has been adopted so
that Ra=106 therein. N polynomial degree in both dimensions,  mid stream function in the centre of
the cavity, umax maximum horizontal velocity on the vertical midline, y vertical position of umax; vmax

maximum vertical velocity on the horizontal midline, x horizontal position of vmax.

N  mid × 102 umax× 102 y vmax× 10 x Nux=0

Present 32 −1:63864 6.48340 0.850 2.2057 0.038 8.8244
48 −1:63864 6.48344 0.850 2.2057 0.038 8.8252
64 −1:63864 6.48344 0.850 2.2057 0.038 8.8252
72 −1:63864 6.48344 0.850 2.2057 0.038 8.8252

Le Qu�er�e 32 −1:63868 6.48351 0.850 2.2056 0.038 8.8252
[8] 48 −1:63864 6.48338 0.850 2.2058 0.038 8.8252

64 −1:63864 6.48343 0.850 2.2059 0.038 8.8252
72 −1:63864 6.48344 0.850 2.2059 0.038 8.8252

distinct architectures, namely a scalar entry level workstation, a Digital Alpha 433au, and a
vector NEC SX-5 supercomputer; the precise speci�cations of the two machines together with
the result of the performance test are reported in Table II. Such results assess the e�ciency
of the method.
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Table II. Employed computational resources and obtained performance for the 8:1 cavity test.

Machine Digital 433au NEC SX-5

Clock rate (MHz) 433 250
Total memory (Mbytes) 128 32768
Peak FLOP rate (MFLOPs) 866 8192
Number of processors 1 of 1 1 of 6

20× 80 6:43× 10−5 9:37× 10−6
CPU time=d.o.f=time step 30× 120 8:99× 10−5 8:60× 10−6
(s=d.o.f.=step) 40× 160 1:22× 10−4 1:08× 10−5

20× 80 3.1 3.1
Memory used (Mbytes) 30× 120 5.8 5.8

40× 160 9.6 9.6

3. RESULTS

In this section, numerical results obtained for the di�erentially heated 8:1 cavity are reported,
see Reference [5] for an exhaustive description of the problem. Since our algorithm is symme-
try preserving, i.e. the symmetry properties of the IBVP are preserved during the simulation,
the initial condition used in all the reported simulations is the �uid at rest and a randomly dis-
tributed temperature with a maximal amplitude of about one-tenth of the temperature di�erence
between the vertical walls. This allows us to observe skew-symmetry breaking instabilities
that it would have been impossible to observe starting from a skew-symmetric temperature
�eld in a quiescent �uid.

3.1. Solution at Ra=3:4× 105
As a �rst case, we considered the �ow for Pr=0:71 and Ra=3:4× 105 as proposed in Ref-
erence [5]. To verify the solution accuracy at this relatively high Rayleigh number, four
di�erent spatial resolutions have been considered, employing 20× 80; 30× 120; 40× 160
and 50× 200 polynomials in the horizontal and vertical directions, respectively. Once an
asymptotic solution has been obtained for the coarser discretization, this solution has been
used as starting point for the �ner simulation. The coarsest, simulation has been run for
1 000 000 time steps with �t=10−3 while the others for 500 000 time steps with the same
�t.
For all the discretizations, the �nal asymptotic solution displays a periodic asymptotic be-

haviour, as expected for such parameter value. Figure 2 contains four snapshots of the �uc-
tuating contribution to the temperature �eld evolving in one period. In Figure 3(right) the
periodic time history of the temperature in the point of co-ordinates (0:181; 7:370) is shown.
In Tables III and IV we report the results concerning the four space discretizations. In par-
ticular, we present the average value and oscillation amplitude of the velocity components
u and v, temperature �, stream function  and vorticity !, at point (0:181; 7:370); more-
over, we present the Nusselt number on the two vertical walls Nux=0 and Nux=W , the total
kinetic energy û, the enstrophy !̂ and the oscillation period T for all the aforementioned
quantities. We report also the skewness �, de�ned by �(0:181; 7:37) + �(0:819; 0:63), which

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1121–1132
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Figure 2. Plot of four captures of the perturbation of the temperature �eld during
a complete period, Ra=3:4× 105, non-dimensional time interval between captures

0:8517; �t=10−3, grid resolution 30× 120.

provides a measure of the skew-symmetry of the solution, this parameter being zero for
skew-symmetric �elds, and pressure di�erences �P14;�P51 and �P35, de�ned by �P14=
P(0:181; 7:37)−P(0:819; 7:37); �P51=P(0:181; 4)−P(0:181; 7:37) and �P35=P(0:181; 0:63)−
P(0:181; 4). All these statistics have been computed over 200 000 time steps, corresponding
approximately to 58 periods and 3407 time steps per period. By increasing the spatial reso-
lution, the period is found to converge to 3.4068. This value is however still a�ected by the
time discretization error.
As the skewness values indicate, the solution obtained is skew-symmetric. Moreover, the

analysis of the �uctuating �elds of velocity, pressure and temperature shows the existence of
13 structures each made of two consecutive zones of positive and negative �uctuations.
Beside the spatial convergence, we checked also the time convergence, see Table V for

the results. The convergence rate has been evaluated by the generalised theory of Richardson
extrapolation [9]. Surprisingly, it turns out that the actual time accuracy is not second order
but only �rst order. We have not been able to �nd an explanation for such a loss of accuracy
of our spectral projection method.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1121–1132
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Figure 3. Evolution of the temperature point value at (0:181; 7:370) (left) and particular of
the asymptotic periodic behaviour (right), Ra=3:4× 105.

Table III. Average values of point, wall and global quantities for the periodic solution, obtained by four
di�erent grid resolutions and �t=10−3; Ra=3:4× 105.

Grid resolution

Quantity 20× 80 30× 120 40× 160 50× 200
u 5:68065× 10−2 5:66994× 10−2 5:66998× 10−2 5:66700× 10−2
v 4:62051× 10−1 4:61862× 10−1 4:61864× 10−1 4:61865× 10−1
� 2:65540× 10−1 2:65460× 10−1 2:65460× 10−1 2:65460× 10−1
� 2:49247× 10−15 −1:87438× 10−15 −2:50133× 10−16 −3:63678× 10−16
 −7:35656× 10−2 −7:35902× 10−2 −7:35901× 10−2 −7:35901× 10−2
! −2:34364 −2:35500 −2:35480 −2:35472
�P14 −1:83181× 10−3 −1:84040× 10−3 −1:84036× 10−3 −1:84035× 10−3
�P51 −5:34919× 10−1 −5:34909× 10−1 −5:35139× 10−1 −5:35140× 10−1
�P35 5:36750× 10−1 5:34910× 10−1 5:34910× 10−1 5:34910× 10−1
Nux=0 −4:58518 −4:57967 −4:57952 −4:57951
Nux=W −4:58518 −4:57967 −4:57952 −4:57951
û 2:39582× 10−1 2:39571× 10−1 2:39570× 10−1 2:39570× 10−1
!̂ 3.01684 3.01690 3.01690 3.01690
T 3.4061 3.4068 3.4068 3.4068

3.2. First Hopf bifurcation and following instabilities

At Ra=3:4× 105 the system has already gone through two bifurcations: the �rst at Ra≈ 3:1
× 105 is of Hopf kind and the second one at Ra≈ 3:15× 105 is transcritical. As a matter of
fact, it exists a �rst Hopf bifurcation which breaks the symmetry of the system, which is skew-
symmetric about the centre of the cavity. Such a bifurcation can be observed, when employing
a symmetry preserving numerical method as the present one, only if the computation is started
from a non-symmetric initial �eld, as in the present computations.
Increasing the Rayleigh number, it is observed: a �rst instability which breaks the skew-

symmetry of the �ow at Ra≈ 3:1× 105, then, further increasing the Rayleigh number, a second

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1121–1132
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Table IV. Oscillation amplitude of point, wall and global quantities for the periodic solution, obtained by
four di�erent grid resolutions and �t=10−3; Ra=3:4× 105.

Grid resolution

Quantity 20× 80 30× 120 40× 160 50× 200
u 5:77611× 10−2 5:72417× 10−2 5:72434× 10−2 5:72427× 10−2
v 8:07758× 10−2 8:00311× 10−2 8:00313× 10−2 8:00314× 10−2
� 4:51415× 10−2 4:47340× 10−2 4:47359× 10−2 4:47360× 10−2
� 5:49560× 10−15 6:05071× 10−15 3:73034× 10−14 3:25572× 10−14
 7:37788× 10−3 7:31321× 10−3 7:31349× 10−3 7:31352× 10−3
! 1:14892 1:13089 1:13136 1:13139
�P14 2:13713× 10−2 2:11906× 10−2 2:11913× 10−2 2:11915× 10−2
�P51 2:34585× 10−2 2:32660× 10−2 2:32667× 10−2 2:32668× 10−2
�P35 1:06351× 10−2 1:05369× 10−2 1:05373× 10−2 1:05373× 10−2

Nux=0 8:26308× 10−3 7:47329× 10−3 7:44177× 10−3 7:44198× 10−3
Nux=W 8:26308× 10−3 7:47329× 10−3 7:44177× 10−3 7:44198× 10−3

û 3:50048× 10−5 3:46658× 10−5 3:46662× 10−5 3:46663× 10−5
!̂ 3:32555× 10−3 3:29997× 10−3 3:30006× 10−3 3:30010× 10−3

Table V. Oscillation amplitude versus �t, grid resolution 30× 120; Ra=3:4× 105.
�t TP1 Nux=0 !̂

0.002 4:67590× 10−2 7:81688× 10−3 3:40635× 10−3
0.001 4:47340× 10−2 7:47329× 10−3 3:29997× 10−3
0.0005 4:37110× 10−2 7:29914× 10−3 3:24914× 10−3
0.0002 4:30942× 10−2 7:19395× 10−3 3:21526× 10−3

instability at Ra≈ 3:15× 105. Here the stable cycle which constitutes the asymptotic solu-
tion after the �rst bifurcation is superseded by another cycle with a larger frequency and
a greater number of structures. Surprisingly enough, this second instability restores the lost
skew-symmetry and it is probably the �rst to be observed by employing a symmetry preserving
solver starting from a skew-symmetric initial condition. (See Figure 4).
The second instability seems to be an exchange of stability between lower- and higher-

frequency solutions. The transcritical character of the instability is observed by looking at the
temporal behaviour of the energy content of the relevant harmonics, namely the one associated
with the 12 structure mode and the one associated with the 13 structure mode, reported in
Figure 5. In fact, as shown in Figure 5 (left), for Ra=3:1× 105 both modes are excited with
a comparable initial amplitude, the lower-frequency mode amplifying with time while the
higher-frequency mode decays. For Ra=3:15× 105, a di�erent behaviour is observed. As can
be seen in Figure 5 (right), both modes start to grow, but for larger times the lower-frequency
mode decays while the higher frequency one reaches an asymptote. An interesting feature that
can be observed is also the energy exchange between the two modes which takes place at a
frequency which is a fraction of the main frequencies, such an exchange tends to disappear
as the system reaches its asymptotic status.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1121–1132
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Figure 5. Time evolution of the power density for the two most energetic frequencies for
Ra=3:1× 105 (left) and Ra=3:15× 105 (right).

As the Rayleigh number is further increased, two more bifurcations can be observed that
lead to a periodic asymptotic behaviour. In each one the symmetry properties of the unsteady
component of the solution change, so that while the perturbation after the �rst bifurcation is
centro-symmetric, after the second bifurcation it is skew-symmetric. After the third bifurcation
the perturbation does not have the skew-symmetry property nor the symmetry property, and
after the fourth bifurcation it switches again to the skew-symmetry. The solution after the �rst
bifurcation presents 12 structures, characterised by local temperature maxima and minima, and
a frequency of 0.2724. After the second bifurcation the number of structures is increased to
13 and the frequency to 0.2936. The number of structures is increased further to 14, with a
frequency of 0.3186, after the third bifurcation, located at 4:0× 105¡Ra64:5× 105, and it in-
creases further to 15 through the fourth bifurcation at 4:5× 105¡Ra65:0× 105, the frequency
growing to 0.3358. The discontinuous change of frequency going through the bifurcations is
probably due to the increase of the number of structures. The appearance of the four asymp-
totic solutions can be observed in Figure 6, where snapshots of the temperature perturbation
�elds are reported.
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Figure 6. Instantaneous captures of temperature �uctuations. From left
to right: Ra=(3:1; 3:15; 4:5; 5:0)× 105.

4. CONCLUSIONS

A new spectral projection method for the simulation of natural convection in the Boussinesq
approximation is proposed. The method relies on a Galerkin formulation and employs three
di�erent polynomial bases which are built by means of Legendre polynomials and which
accommodate the di�erent boundary conditions. The particular bases are formulated so that
the maximum degree of sparsity in the discrete operators can be exploited in conjunction
with the direct product structure of the problem. The projection scheme is an extension of
the method proposed in Reference [7], and is formulated in pressure correction form with
a second-order BDF time advancing scheme [2]. The spatial and temporal accuracy of the
proposed method is thoroughly assessed by resorting to comparisons with both a problem
with known analytical solution and established benchmark results [8].
The method is applied to the numerical investigation on the stability of natural convection

in the di�erentially heated 8:1 cavity. In particular the �rst Hopf bifurcation has been located
in the interval 3:075× 1056Ra63:125× 105. Moreover, three more transcritical bifurcations in
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the range 3:15× 1056Ra65:0× 105 are recognized. The described sequence of bifurcations
alternatively breaks and restores the skew-symmetry of the �ow before the appearance of
more complex dynamics for larger Rayleigh numbers. A detailed description of the solution
at Ra=3:4× 105 is also reported.
Finally, we must note that, while analytical tests assess the second order in time accu-

racy of the proposed method, a disappointing �rst-order convergence rate is achieved for the
di�erentially heated cavity �ow. The reason for this behaviour is not known, and therefore
certainly deserves further investigation.
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